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Abstra
t

An algorithm by Bernal, De Floriani, and Puppo, for inserting a line segment into a Constrained Delaunay

triangulation is further developed. The new version of the algorithm inserts the line segment in exa
tly

the same manner in whi
h the old one does but has the additional 
apability that it does not delete the

triangles interse
ted by the line segment but transforms them through edge-swapping. Sin
e the 
on
ept of

edge-swapping generalizes to 3�dimensional spa
e, a version of the algorithm without the optimization steps

for the Delaunay property is also proposed for attempting to insert a line segment into a tetrahedralization.

A result is then presented that shows that for 
ertain 
ases the failure of this algorithm to insert a line

segment is an indi
ation that it 
an not be done. Finally, 3�dimensional problems that 
an be approa
hed

as 2�dimensional problems are identi�ed.

1. Introdu
tion

A triangulation for a �nite set of points S in the plane is a �nite 
olle
tion of triangles in the plane having

pair-wise disjoint interiors, ea
h of whi
h interse
ts S exa
tly at its verti
es, and the union of whi
h is the


onvex hull of S. Given a triangulation T for S, we say that T is Delaunay if for ea
h triangle in T there

does not exist a point of S inside the 
ir
um
ir
le of the triangle [11℄. A (Delaunay) tetrahedralization is

similarly de�ned with tetrahedra and spheres taking the pla
e of triangles and 
ir
les.

A more general triangulation 
an be de�ned. Let S be as above, and let E be a �nite 
olle
tion, possibly

empty, of line segments with endpoints in S that interse
t only at points in S. We say that a triangulation

T for S is 
onstrained by E if ea
h line segment in E is the union of edges in T . Given T , a triangulation

for S 
onstrained by E, we say that T is Delaunay 
onstrained by E if for ea
h t in T there does not exist a

point P of S inside the 
ir
um
ir
le of t su
h that no line segment in E interse
ts the interior of the 
onvex

hull of t [ fPg.

Let E be as above. Given T , a triangulation 
onstrained by E, we say that T satis�es the empty 
ir
le


riterion on a lo
al basis if given any two triangles t, t

0

in T that share a 
ommon edge not 
ontained in any

line segment in E, then the vertex in t

0

n t is not inside the 
ir
um
ir
le of t. That triangulations of this

type and 
onstrained Delaunay triangulations are equivalent has been proven in [5℄, [9℄.

Algorithms for the 
omputation of a Delaunay triangulation for the verti
es of a polygon 
onstrained by

the boundary of the polygon have been presented in [5℄, [9℄, [10℄. As for the general problem of 
omputing a

Delaunay triangulation for a set of n points 
onstrained by a set of line segments, an O(n

2

) algorithm has been

presented in [9℄, O(n logn) divide-and-
onquer algorithms have been presented in [4℄, [13℄, and an O(n logn)

plane-sweep algorithm has been presented in [12℄. Ea
h one of these algorithms has the disadvantage that

the set of line segments must be known before the exe
ution of the algorithm.

In [6℄ a method has been presented for the in
remental 
omputation of a 
onstrained Delaunay triangula-

tion by stepwise insertion of points and line segments. A

ordingly, algorithms are presented in [6℄ for point

insertion and line segment insertion into a 
onstrained Delaunay triangulation. Independently, the algorithm

for line segment insertion was also presented in [1℄. In the following se
tion, we des
ribe a new version of this

algorithm that works in the same manner in whi
h the old one does, but that has the additional 
apability of

not deleting the triangles interse
ted by the line segment, transforming them instead through edge-swapping

(Lawson's transformation [8℄). In Se
tion 3, we take advantage of the fa
t that edge-swapping generalizes

to 3�dimensional spa
e and propose what would be 
onsidered the generalization to 3�dimensional spa
e

of the algorithm without the optimization steps for the Delaunay property. A result is then presented that

shows that for 
ertain 
ases the failure of this algorithm to insert a line segment into a tetrahedralization is

an indi
ation that it 
annot be done. Finally, in the same se
tion, 3�dimensional problems are identi�ed

that 
an be approa
hed algorithmi
ally as if they are 2�dimensional.



2. Segment insertion by edge-swapping

Let T be a triangulation in the plane, not ne
essarily Delaunay, let P

1

, P

2

, P

1

6= P

2

, be verti
es in T , and

let T

�

be the triangles in T whose interiors are interse
ted by P

1

P

2

, i. e. the line segment with endpoints

P

1

, P

2

. We say that P

1

P

2

has been inserted into T produ
ing

^

T if

^

T is a triangulation for the verti
es of

T su
h that P

1

P

2

is the union of edges in

^

T and ea
h triangle in T n T

�

is also in

^

T . In what follows, and

assuming that T is 
onstrained Delaunay, we present pro
edure INSERT SEGMENT whi
h inserts P

1

P

2

into the triangulation T by edge-swapping, produ
ing a 
onstrained Delaunay triangulation with P

1

P

2

as an

additional 
onstraint. Without any loss of generality, we assume that P

1

P

2

is not an edge in T and that its

relative interior does not 
ontain any verti
es in T .

In [1℄ and [6℄ this algorithm was presented but without edge-swapping. This older version 
onsists

essentially of two steps. In the �rst step, the triangles whose interiors are interse
ted by the line segment are

dete
ted and deleted so that a non-triangulated region inside the 
onvex hull of the original triangulation

results. In the se
ond step, this region is divided into two polygons separated by the line segment, and a

Delaunay triangulation is then 
omputed for ea
h polygon. Ea
h polygon satis�es the property that ea
h

point in the polygon is visible through the polygon from the line segment. Be
ause of this property, ea
h

polygon 
an be easily triangulated in a linear fashion, and then optimized for the Delaunay property with

pro
edures based on the empty 
ir
le 
riterion. Outlines of this older version, justi�
ations, optimization

pro
edures, and related results 
an be found in [1℄, [2℄, [6℄, [7℄.

The new version of the algorithm presented here works essentially in the same manner in whi
h the

old one does, thus produ
ing exa
tly the same triangles, but has the 
apability through edge-swapping of

maintaining at all times a 
omplete triangulation. Let T , P

1

, P

2

, T

�

be as above. Essentially, ignoring the

optimization steps, the new version of the algorithm works as follows. For some integer n, let t

i

, i = 1; : : : ; n,

be the triangles in T

�

in the order in whi
h they are interse
ted by P

1

P

2

from P

1

to P

2

. Indu
tively, assume

that for an integer i, 1 � i � n� 1, the triangles t

j

, j = 1; : : : ; i, have been pro
essed in that order by the

algorithm and that T

�

and T have been transformed a

ordingly. Triangle t

i+1

, whi
h still belongs to T

�

, is

then pro
essed as follows. Triangle t

0

is initialized to t

i+1

. Triangle t

00

is set equal to the triangle in T

�

, not

ne
essarily t

i

, that 
urrently shares a fa
et with t

0

interse
ted by P

1

P

2

and whi
h is 
loser to P

1

than t

0

in the

dire
tion of P

1

P

2

. If t

0

[ t

00

is not a stri
tly 
onvex quadrilateral then the algorithm is done pro
essing t

i+1

.

Otherwise t

0

, t

00

, and therefore T

�

and T , are transformed through the repla
ement of the 
ommon edge by

the alternative diagonal of the quadrilateral. If only one of the two new triangles is interse
ted by P

1

P

2

then

t

0

is rede�ned as the one that is interse
ted. Otherwise it is rede�ned as the one of the two triangles that is


loser to P

1

in the dire
tion of P

1

P

2

. The pro
ess above is repeated for the new t

0

, i. e. t

00

is rede�ned, et
.

until t

00

does not exist as desired or t

0

[ t

00

is not a stri
tly 
onvex quadrilateral. The insertion of P

1

P

2

into

T is a

omplished as soon as t

n

is pro
essed by the algorithm.

Let T , P

1

, P

2

, T

�

be as above. In the following, we list and des
ribe, in the order of their �rst appearan
e,

pro
edures used in INSERT SEGMENT as primitives.

INTERSECTED TRIANGLES(T; T

�

; P

1

; P

2

; Q; t

F

): This pro
edure identi�es T

�

. It also lo
ates t

F

in T

�

with P

1

as one of its verti
es and a vertex Q of t

F

di�erent from P

1

.

NEXT TRIANGLE(T; P

1

; P

2

; t

P

; t

C

): Assuming that P

1

P

2

interse
ts the interior of t

P

, t

P

in T , P

2

62 t

P

,

this pro
edure lo
ates t

C

in T whi
h shares a fa
et with t

P

interse
ted by P

1

P

2

, and whi
h is 
loser to P

2

than t

P

in the dire
tion of P

1

P

2

.

NEXT VERTEX(t

P

; t

C

; P ): Assuming that triangles t

P

and t

C

share a fa
et, this pro
edure lo
ates vertex

P of t

C

not in t

P

.

PREVIOUS VERTEX(t

C

; P

1

; P

2

; P;Q): Assuming that P is a vertex of triangle t

C

and that P

1

P

2

interse
ts

exa
tly one of the edges of t

C

with P as an endpoint, this pro
edure lo
ates the vertex Q of t

C

for whi
h

P

1

P

2

does not interse
t PQ.

STRICT CONVEXITY(t

C

; t

P

; f lag2): Assuming that triangles t

C

and t

P

share a fa
et, this pro
edure sets

flag2 to zero whenever t

C

[ t

P

is not a stri
tly 
onvex quadrilateral.

EDGE SWAP(t

C

; t

P

; Q; T; T

�

): Assuming that t

C

[ t

P

is a stri
tly 
onvex quadrilateral, t

C

, t

P

in T

�

, and

that Q is a vertex in t

C

\ t

P

, this pro
edure transforms t

C

, t

P

, and therefore T

�

and T , through the re-

pla
ement of the 
ommon edge by the alternative diagonal of the quadrilateral in su
h a way that Q is the

vertex of the transformed t

P

not in the transformed t

C

.

OPTIMIZE(T; T

�

; t

P

; P;Q;R): Assuming that P , Q, R are the verti
es of t

P

, t

P

in T

�

, starting with t

P

this pro
edure transforms T

�

, and therefore T , through appli
ations of the empty 
ir
le 
riterion and edge-

swapping in the dire
tion of QR.

PREVIOUS TRIANGLE(T; P

1

; P

2

; t

C

; t

P

): Assuming that P

1

P

2

interse
ts the interior of t

C

, t

C

in T ,

P

1

62 t

C

, this pro
edure lo
ates t

P

in T whi
h shares a fa
et with t

C

interse
ted by P

1

P

2

, and whi
h is


loser to P

1

than t

C

in the dire
tion of P

1

P

2

.



THIRD VERTEX(t

C

; R; P;Q): Assuming that R, P are distin
t verti
es of triangle t

C

, this pro
edure iden-

ti�es Q, the vertex of t

C

di�erent from R and P .

The outline of INSERT SEGMENT follows. We noti
e that without the optimization steps (steps 20

and 32) the pro
edure simply be
omes one for inserting a line segment into a triangulation.

pro
edure INSERT SEGMENT(T; P

1

; P

2

)

begin

1. INTERSECTED TRIANGLES(T; T

�

; P

1

; P

2

; Q; t

F

);

2. F (1; t

F

) := P

1

; F (2; t

F

) := Q; flag1 := 1;

3. while (flag1 = 1) do

begin

4. t

P

:= t

F

;

5. NEXT TRIANGLE(T; P

1

; P

2

; t

P

; t

C

);

6. NEXT VERTEX(t

P

; t

C

; P );

7. if (P 6= P

2

) then

begin

8. PREVIOUS VERTEX(t

C

; P

1

; P

2

; P;Q);

9. t

F

:= t

C

end

else

begin

10. Q := F (2; t

P

); flag1 := 0

end

11. if (F (1; t

P

) = P

1

) then F (2; t

P

) := Q;

12. F (1; t

C

) := Q; F (2; t

C

) := P ; flag2 := 1;

13. while (flag2 = 1) do

begin

14. STRICT CONVEXITY(t

C

; t

P

; f lag2);

15. if (flag2 = 1) then

begin

16. R := F (1; t

P

); t

L

:= t

C

;

17. EDGE SWAP(t

C

; t

P

; Q; T; T

�

);

18. if (t

F

= t

L

) then t

F

:= t

C

;

19. if (F (1; t

C

) = F (2; t

P

)) then

begin

20. OPTIMIZE(T; T

�

; t

P

; P;Q;R);

21. F (1; t

C

) := R; Q := R

end

else

begin

22. F (1; t

C

) := R; F (2; t

C

) := F (2; t

P

);

23. F (1; t

P

) := Q; F (2; t

P

) := P ;t

C

:= t

P

end

24. if (R 6= P

1

) then

begin

25. PREVIOUS TRIANGLE(T; P

1

; P

2

; t

C

; t

P

);

26. if (F (1; t

P

) = P

1

) then F (2; t

P

) := Q;

27. if (P = P

2

) then

begin

28. Q := F (2; t

P

); F (1; t

C

) := Q

end

end

else

begin

29. flag2 := 0;

30. if (P = P

2

) then

begin

31. THIRD VERTEX(t

C

; R; P;Q);

32. OPTIMIZE(T; T

�

; t

C

; P;Q;R)

end



else

begin

33. NEXT TRIANGLE(T; P

1

; P

2

; t

C

; t

N

);

34. F (2; t

C

) := F (1; t

N

)

end

end

end

end

end

end

Justi�
ations of this pro
edure appear in [1℄, [3℄, [7℄.

3. The 3�dimensional version of the algorithm

Let T be a tetrahedralization, not ne
essarily Delaunay, let P

1

, P

2

, P

1

6= P

2

, be verti
es in T , and let T

�

be

the tetrahedra in T ea
h of whi
h is interse
ted by P

1

P

2

at either its interior or the relative interior of one

of its fa
ets. We say that P

1

P

2


an be inserted into T if a tetrahedralization

^

T for the verti
es of T exists

su
h that P

1

P

2

is the union of edges in

^

T and ea
h tetrahedron in T n T

�

is also in

^

T . In what follows,

we present pro
edure 3D INSERT ATTEMPT whi
h attempts to insert P

1

P

2

into T , and whi
h 
an be


onsidered as the generalization to 3�dimensional spa
e of INSERT SEGMENT without the optimization

steps. We noti
e that only the 
ase for whi
h the relative interior of P

1

P

2

does not interse
t any edges in T

is addressed in what follows.

Let T , P

1

, P

2

be as above. In the following, we list and des
ribe, in the order of their �rst appearan
e,

pro
edures used in 3D INSERT ATTEMPT as primitives. Pro
edures with obvious 2�dimensional 
ounter-

parts in INSERT SEGMENT are neither listed nor des
ribed here.

FIRST TETRAHEDRON(T; P

1

; P

2

; Q; t

F

): This pro
edure lo
ates t

F

in T with P

1

as one of its verti
es and

interior interse
ted by P

1

P

2

, and lo
ates a vertex Q of t

F

, Q 6= P

1

.

COMMON VERTEX(t

C

; t

P

; Q; S; U): Assuming that tetrahedra t

C

and t

P

share a fa
et, and that Q and

S are verti
es, not ne
essarily distin
t, of the fa
et, this pro
edure lo
ates U , a vertex of the fa
et di�erent

from Q and S.

TWO THREE(T; t

C

; t

P

; P;R;Q;U): Assuming that t

C

[ t

P

is a stri
tly 
onvex hexahedron, t

C

, t

P

in T ,

that P is the vertex in t

C

n t

P

, that R is the vertex in t

P

n t

C

, and that Q, U , Q 6= U , are verti
es in t

C

\ t

P

,

this pro
edure transforms T by transforming t

C

and t

P

into the three tetrahedra that have PR in 
ommon

and whose union is the hexahedron, in su
h a way that t

C

be
omes the one of the three tetrahedra that does

not have Q as a vertex, and t

P

the one that has Q and U as verti
es.

FACET INTERSECT(P;R;U; P

1

; P

2

; f lag2): Assuming that P , R, U are the verti
es of a fa
et of a tetra-

hedron, this pro
edure sets flag2 to zero whenever P

1

P

2

does not interse
t the relative interior of the fa
et.

The outline of 3D INSERT ATTEMPT follows. Here a variable flag is de�ned whi
h at the end of the

exe
ution of the pro
edure equals 1 if P

1

P

2

has been inserted, zero otherwise.

pro
edure 3D INSERT ATTEMPT(T; P

1

; P

2

; f lag)

begin

1. flag := 0;

2. FIRST TETRAHEDRON(T; P

1

; P

2

; Q; t

F

);

3. F (1; t

F

) := P

1

; F (2; t

F

) := Q; flag1 := 1;

4. while (flag1 = 1) do

begin

5. t

P

:= t

F

;

6. NEXT TETRAHEDRON(T; P

1

; P

2

; t

P

; t

C

);

7. NEXT VERTEX(t

P

; t

C

; P );

8. if (P 6= P

2

) then

begin

9. PREVIOUS VERTEX(t

C

; P

1

; P

2

; P;Q);

10. t

F

:= t

C

end

else

begin

11. Q := F (2; t

P

); flag1 := 0



end

12. if (F (1; t

P

) = P

1

) then F (2; t

P

) := Q;

13. F (1; t

C

) := Q; F (2; t

C

) := P ; flag2 := 1;

14. while (flag2 = 1) do

begin

15. STRICT CONVEXITY(t

C

; t

P

; f lag2);

16. if (flag2 = 1) then

begin

17. R := F (1; t

P

); S := F (2; t

P

);

18. COMMON VERTEX(t

C

; t

P

; Q; S; U);

19. if (F (1; t

C

) = F (2; t

P

)) then

begin

20. t

L

:= t

C

;

21. TWO THREE(T; t

C

; t

P

; P;R;Q;U);

22. if (t

F

= t

L

) then t

F

:= t

C

;

23. F (1; t

C

) := R; Q := R

end

else

begin

24. FACET INTERSECT(P;R;U; P

1

; P

2

; f lag2);

25. if (flag2 = 1) then

begin

26. t

L

:= t

C

;

27. TWO THREE(T; t

C

; t

P

; P;R;Q;U);

28. if (t

F

= t

L

) then t

F

:= t

C

;

29. F (1; t

C

) := R; F (2; t

C

) := F (2; t

P

);

30. F (1; t

P

) := Q; F (2; t

P

) := P ;t

C

:= t

P

end

end

31. if (flag2 = 1) then

begin

32. if (R 6= P

1

) then

begin

33. PREVIOUS TETRAHEDRON(T; P

1

; P

2

; t

C

; t

P

);

34. if (F (1; t

P

) = P

1

) then F (2; t

P

) := Q;

35. if (P = P

2

) then

begin

36. Q := F (2; t

P

); F (1; t

C

) := Q

end

end

else

begin

37. flag2 := 0;

38. if (P = P

2

) then flag := 1

else

begin

39. NEXT TETRAHEDRON(T; P

1

; P

2

; t

C

; t

N

);

40. F (2; t

C

) := F (1; t

N

)

end

end

end

end

end

end

end

Experiments show that 3D INSERT ATTEMPT seldom su

eeds in inserting a line segment. However,

this may just be an indi
ation that it is seldom possible to insert a line segment into a tetrahedralization.

Let T , P

1

, P

2

, T

�

be as above. The following proposition shows that for a 
ertain kind of T

�

the failure of

the pro
edure simply signi�es that P

1

P

2


an not be inserted into T .



Proposition 1. If points Q

1

, Q

2

exist, Q

1

6= Q

2

, that are verti
es of every tetrahedron in T

�

, then at the

end of the exe
ution of 3D INSERT ATTEMPT, variable flag equals 1 if and only if P

1

P

2


an be inserted

into T .

Proof. That flag equal to 1 implies that the line segment 
an be inserted into T follows trivially. Thus, it

remains to be shown that if flag equals zero then the line segment 
an not be inserted into T .

For some positive integer n, let t

i

, i = 1; : : : ; n, be the tetrahedra in T

�

in the order in whi
h they are

interse
ted by the line segment from P

1

to P

2

.

At the end of the exe
ution of the pro
edure let T

��

be the 
olle
tion of tetrahedra in T that are interse
ted

by the relative interior of the line segment, and for some positive integer m, let t

0

i

, i = 1; : : : ;m, be the

tetrahedra in T

��

in the order in whi
h they are interse
ted by the line segment from P

1

to P

2

.

Clearly, n � m, and sin
e flag equals zero it follows that m � 3.

Let R

0

equal P

1

, and, indu
tively, for ea
h i, i = 1; : : : ; n, let R

i

be the vertex of t

i

di�erent from R

i�1

, Q

1

,

and Q

2

. Similarly, points R

0

i

, i = 0; : : : ;m are de�ned with respe
t to t

0

i

, i = 1; : : : ;m.

We de�ne a fun
tion f from f0; : : : ;mg into f0; : : : ; ng in su
h a way that for ea
h i, i = 0; : : : ;m, R

0

i

equals

R

f(i)

. Based on this de�nition, for ea
h i, i = 1; : : : ;m, we then de�ne sets W

i

� fR

0

; : : : ; R

n

g, by

W

i

� fR

f(i�1)

= R

0

i�1

; R

f(i�1)+1

; : : : ; R

f(i)

= R

0

i

g:

From the de�nition of T

��

it follows that given i, 2 � i � m, the union of t

0

i�1

and t

0

i

is not a stri
tly 
onvex

hexahedron (step 15 of pro
edure). Thus, it is not possible to insert the line segment and at the same time

to have a new tetrahedron in T with verti
es Q

1

, R

0

i�2

, R

0

i�1

, R

0

i

. The same is true for a tetrahedron with

verti
es Q

2

, R

0

i�2

, R

0

i�1

, R

0

i

. From this and the fa
t that it is always true that F (1; t

C

) equals F (2; t

P

) in

step 19 of the pro
edure, it follows that for ea
h i, i = 2; : : : ;m, it is not possible to insert the line segment

and at the same time to have a new tetrahedron with one vertex equal to either Q

1

or Q

2

, two verti
es in

W

i�1

, and one vertex in W

i

n fR

0

i�1

g.

In what follows, we assume that the line segment 
an be inserted into T . Thus, we must assume that T

�

has

been transformed in su
h a way that the line segment is one of its edges. Clearly, in the transformed T

�

,

whi
h we denote by

^

T

�

, only one tetrahedron 
an have both Q

1

and Q

2

as verti
es, namely the tetrahedron

with verti
es Q

1

, Q

2

, P

1

, and P

2

. All other tetrahedra with either Q

1

or Q

2

as a vertex have in addition

three verti
es of the form R

j

, R

k

, R

l

, 0 � j < k < l � n.

For some integer n

0

, 1 � n

0

< n, we de�ne integers h

i

, l

i

, i = 0; : : : ; n

0

, as follows. We let h

0

and l

0

equal

0 and n, respe
tively. Indu
tively, given i, i > 0, we assume integers h

i�1

, l

i�1

, 0 � h

i�1

< l

i�1

� n, have

been de�ned su
h that for integers j, k, 1 � j < k � m, R

h

i�1

2W

j

, R

l

i�1

2W

k

, R

h

i�1

6= R

0

j

, R

l

i�1

6= R

0

k�1

,

and the triangle with verti
es Q

1

, R

h

i�1

, R

l

i�1

is a fa
et of a tetrahedron in

^

T

�

. Then from the geometry

of T

�

and the last fa
t about the triangle with verti
es Q

1

, R

h

i�1

, R

l

i�1

, it follows that integers h

i

, l

i

exist,

h

i�1

< h

i

< l

i

� l

i�1

, for whi
h R

h

i

2 W

j

, R

l

i

62W

j

, and the tetrahedron with verti
es Q

1

, R

h

i�1

, R

h

i

, R

l

i

belongs to

^

T

�

. If R

l

i

belongs to W

j+1

then we let n

0

equal i. That for some i, 1 � i < n, and some j,

1 � j < m, R

l

i

belongs to W

j+1

, while R

h

i�1

, R

h

i

belong to W

j

, follows from the fa
t that fh

i

g is an

in
reasing sequen
e of integers bounded above by fl

i

g whi
h is itself a non-in
reasing sequen
e of integers.

Thus, n

0

is well de�ned. However, this is a 
ontradi
tion, for it implies for some j, 1 � j < m, the existen
e

of a tetrahedron in

^

T

�

with one vertex equal to Q

1

, two verti
es in W

j

, namely R

h

n

0

�1

and R

h

n

0

, and one

vertex in W

j+1

n fR

0

j

g, namely R

l

n

0

. This 
ompletes the proof of the proposition.

Finally, we shed more light on the fundamental di�eren
es between planar and 3�dimensional line in-

sertion problems by identifying those 3�dimensional problems that 
an be approa
hed algorithmi
ally as

2�dimensional problems. In order to do this we �rst develop some notation. For a positive integer n, let

P

i

, i = 1; : : : ; n, be distin
t points in the x� y plane of 3�dimensional spa
e, and for ea
h i, i = 1; : : : ; n,

let x

i

, y

i

be the x� and y�
oordinates, respe
tively, of P

i

. Given a triangulation T for the set of points P

i

,

i = 1; : : : ; n, and numbers z

i

, i = 1; : : : ; n, we let T

0

be the 
olle
tion of distin
t 2�dimensional triangles in

3�dimensional spa
e whose perpendi
ular proje
tion onto the x � y plane is T , and whose set of verti
es

equals the set of points P

0

i

, i = 1; : : : ; n, de�ned by setting P

0

i

equal to (x

i

; y

i

; z

i

) for ea
h i, i = 1; : : : ; n.

Let P

i

, P

0

i

, x

i

, y

i

, z

i

, i = 1; : : : ; n, T , T

0

be as above. Assume that P

1

P

2

is not an edge in T and that

its relative interior does not 
ontain any verti
es in T . Let T

�

be the 
olle
tion of triangles in T that are

interse
ted by the relative interior of P

1

P

2

, and let

�

T be the 
olle
tion of triangles in T

0

whose perpendi
ular

proje
tion onto the x� y plane is T

�

. For arbitrarily large positive z we let

^

Q represent the point (0; 0; z),

and

^

T the 
olle
tion of tetrahedra obtained by 
omputing the 
onvex hulls of

^

Q together with ea
h of the

triangles in

�

T . In what follows, we say that P

0

1

P

0

2


an be inserted into

^

T if a 
olle
tion of tetrahedra

~

T exists



su
h that the tetrahedra in

~

T have pair-wise disjoint interiors, the relative interior of P

0

1

P

0

2

is 
ontained in

the interior of the union of the tetrahedra in

~

T , P

0

1

P

0

2

is an edge in

~

T ,

~

T and

^

T have the same set of verti
es,

and the union of the tetrahedra in

~

T equals the union of the tetrahedra in

^

T . Based on these de�nitions, we

noti
e that if P

0

1

P

0

2

satis�es the prerequisite for insertion into

^

T , i. e. its relative interior lies entirely in

^

T

and does not interse
t any edges of tetrahedra in

^

T , then an attempt 
an be made to insert it into

^

T with

3D INSERT ATTEMPT even though

^

T is not ne
essarily a 
omplete tetrahedralization for its verti
es.

We assume that P

0

1

P

0

2

satis�es the prerequisite for insertion into

^

T , that INSERT SEGMENT (without

the optimization steps) has been exe
uted for inserting P

1

P

2

into T , and that pro
edure EDGE SWAP

(step 17 of INSERT SEGMENT) has been exe
uted m times during the insertion. Similarly, we assume

that 3D INSERT ATTEMPT has been exe
uted for attempting to insert P

0

1

P

0

2

into

^

T and that pro
edure

TWO THREE (steps 21 and 27 of 3D INSERT ATTEMPT) has been exe
utedm

0

times during the attempt.

We de�ne fun
tions a, e from f1; : : : ;mg into f(i; j) : 1 � i < j � ng as follows: Given l, 1 � l � m, we set

a(l) and e(l) equal to (h; k) and (q; r), respe
tively, where h, k, q, r are integers, 1 � h < k � n, 1 � q < r � n,

for whi
h after the l

th

exe
ution of EDGE SWAP in INSERT SEGMENT, P

h

P

k

is the new edge in the

triangulation and P

q

P

r

is the edge that has been eliminated. Correspondingly, assuming m

0

> 0, we also

de�ne fun
tions a

0

, e

0

from f1; : : : ;m

0

g into f(i; j) : 1 � i < j � ng as follows: Given l, 1 � l � m

0

, we set a

0

(l)

and e

0

(l) equal to (h; k) and (q; r), respe
tively, where h, k, q, r are integers, 1 � h < k � n, 1 � q < r � n,

for whi
h after the l

th

exe
ution of TWO THREE in 3D INSERT ATTEMPT, P

0

h

P

0

k

is the edge that the

three new tetrahedra have in 
ommon and P

0

q

P

0

r

is the edge that the two eliminated tetrahedra had in 
ommon

and that does not have

^

Q as an endpoint. Clearly, a(m) equals (1; 2), and if 3D INSERT ATTEMPT is

su

essful then m

0

> 0 and a

0

(m

0

) also equals (1; 2).

Finally, in what follows, given integers h, k, q, r, 1 � h < k � n, 1 � q < r � n, we say that (h; k) 
rosses

(q; r) if the relative interiors of P

h

P

k

and P

q

P

r

have one and only one point in 
ommon. Assuming (h; k)


rosses (q; r), we say then that (h; k) is below (q; r) if at the point at whi
h P

h

P

k

interse
ts P

q

P

r

, P

0

h

P

0

k

is

lower than P

0

q

P

0

r

with respe
t to the z�axis.

We are now ready to present a proposition that identi�es the 
onditions that the tetrahedra in

^

T must

satisfy so that P

0

1

P

0

2

satis�es the prerequisite for insertion into

^

T , and 
an then be inserted into

^

T with

3D INSERT ATTEMPT in a manner that mimi
s exa
tly what INSERT SEGMENT does when inserting

P

1

P

2

into T .

Proposition 2. P

0

1

P

0

2

satis�es the prerequisite for insertion into

^

T , m equals m

0

, and for ea
h integer l,

l = 1; : : : ;m, a(l) equals a

0

(l), and e(l) equals e

0

(l) so that P

0

1

P

0

2


an be inserted into

^

T if and only if for ea
h

integer l, l = 1; : : : ;m, e(l) is below a(l).

Proof. The `only if' part follows easily. In order to prove the `if' part it suÆ
es to prove that for ea
h integer l,

l = 1; : : : ;m, e(l), whi
h obviously 
rosses (1; 2), is below (1; 2). This will imply that the line segment satis�es

the prerequisite for insertion in

^

T , and that flag2 always equals 1 in step 25 of 3D INSERT ATTEMPT

(after the exe
ution of pro
edure FACET INTERSECT in step 24).

Let T

�

be as de�ned above, and let T

�

0

equal T

�

. Indu
tively, for ea
h l, l = 1; : : : ;m, let T

�

l

be the


olle
tion of triangles in the x� y plane of 3�dimensional spa
e whi
h is the transformation of T

�

l�1

after

the l

th

edge swap.

Let

�

T be as de�ned above. For ea
h l, l = 0; : : : ;m, let

�

T

l

be the 
olle
tion of distin
t 2�dimensional triangles

in 3�dimensional spa
e whose perpendi
ular proje
tion onto the x� y plane equals T

�

l

, and whose set of

verti
es equals that of

�

T .

For ea
h l, l = 0; : : : ;m, we de�ne a real-valued fun
tion f

l

with domain the union of the triangles in T

�

as

follows. Given a point P in a triangle in T

�

we let x̂, ŷ be the x� and y�
oordinates, respe
tively, of P ,

and let f

l

(P ) be the unique number for whi
h the point de�ned by (x̂; ŷ; f

l

(P )) belongs to a triangle in

�

T

l

.

Given an integer l, 1 � l � m, let h, k, q, r, 1 � h < k � n, 1 � q < r � n, be those integers for whi
h a(l)

equals (h; k) and e(l) equals (q; r). By de�nition T

�

l

is the transformation of T

�

l�1

obtained by repla
ing the

edge with endpoints P

q

, P

r

by the edge with endpoints P

h

, P

k

. Clearly, the repla
ed edge is shared by two

triangles in T

�

l�1

whose union is a stri
tly 
onvex quadrilateral and the new edge is the alternative diagonal of

this quadrilateral. These observations and the fa
t that e(l) is below a(l) imply that f

l�1

equals f

l

everywhere

ex
ept in the relative interior of the aforementioned quadrilateral in whi
h f

l�1

is stri
tly less than f

l

. In

parti
ular, given a point P in the relative interior of the repla
ed edge, it then follows that f

l�1

(P ) < f

l

(P ).

Thus, sin
e the edge with endpoints P

1

, P

2

belongs to T

�

m

, given an integer l, 1 � l � m, and a point P

whi
h is the interse
tion of the edge with endpoints P

1

, P

2

and the edge repla
ed in T

�

l�1

during the l

th

edge swap, it must follow that f

l�1

(P ) < f

l

(P ) � f

m

(P ). Hen
e, e(l) is below (1; 2) and the proof of the

proposition is 
omplete.
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